## [answered] A nanoparticle containing 6 atoms can be modeled approximat

A nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are 4e-21 J apart. Use k = 1.4e-23 J/K.

(a) When the nanoparticle's energy is in the range 5(4e-21) J to 6(4e-21) J, what is the approximate temperature? (In order to keep precision for calculating the heat capacity, give the result to the nearest tenth of a degree.)

K

(b) When the nanoparticle's energy is in the range 8(4e-21) J to 9(4e-21) J, what is the approximate temperature? (In order to keep precision for calculating the heat capacity, give the result to the nearest tenth of a degree.)

K

(c) When the nanoparticle's energy is in the range 5(4e-21) J to 9(4e-21) J, what is the approximate heat capacity per atom?

?J/K

Note that between parts (a) and (b) the average energy increased from "5.5 quanta" to "8.5 quanta". As a check, compare your result with the high temperature limit of 3k, where k = 1.4e-23 J/K.

Solution details:
STATUS
QUALITY
Approved

This question was answered on: Sep 18, 2020 Solution~0001003376.zip (25.37 KB)

This attachment is locked

We have a ready expert answer for this paper which you can use for in-depth understanding, research editing or paraphrasing. You can buy it or order for a fresh, original and plagiarism-free copy from our tutoring website www.aceyourhomework.com (Deadline assured. Flexible pricing. TurnItIn Report provided)

##### Pay using PayPal (No PayPal account Required) or your credit card . All your purchases are securely protected by .

STATUS

QUALITY

Approved

Sep 18, 2020

EXPERT

Tutor 